Setup

Connect to AnnotationHub:

ah <- AnnotationHub::AnnotationHub()

Connect to ExperimentHub:

eh <- ExperimentHub::ExperimentHub()

OrgDb package for human:

orgdb <- AnnotationHub::query(ah, c("orgDb", "Homo sapiens"))
orgdb <- orgdb[[1]]
orgdb
#> OrgDb object:
#> | DBSCHEMAVERSION: 2.1
#> | Db type: OrgDb
#> | Supporting package: AnnotationDbi
#> | DBSCHEMA: HUMAN_DB
#> | ORGANISM: Homo sapiens
#> | SPECIES: Human
#> | EGSOURCEDATE: 2022-Sep12
#> | EGSOURCENAME: Entrez Gene
#> | EGSOURCEURL: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA
#> | CENTRALID: EG
#> | TAXID: 9606
#> | GOSOURCENAME: Gene Ontology
#> | GOSOURCEURL: http://current.geneontology.org/ontology/go-basic.obo
#> | GOSOURCEDATE: 2022-07-01
#> | GOEGSOURCEDATE: 2022-Sep12
#> | GOEGSOURCENAME: Entrez Gene
#> | GOEGSOURCEURL: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA
#> | KEGGSOURCENAME: KEGG GENOME
#> | KEGGSOURCEURL: ftp://ftp.genome.jp/pub/kegg/genomes
#> | KEGGSOURCEDATE: 2011-Mar15
#> | GPSOURCENAME: UCSC Genome Bioinformatics (Homo sapiens)
#> | GPSOURCEURL: 
#> | GPSOURCEDATE: 2022-Aug31
#> | ENSOURCEDATE: 2022-Jun28
#> | ENSOURCENAME: Ensembl
#> | ENSOURCEURL: ftp://ftp.ensembl.org/pub/current_fasta
#> | UPSOURCENAME: Uniprot
#> | UPSOURCEURL: http://www.UniProt.org/
#> | UPSOURCEDATE: Fri Sep 23 16:26:35 2022
keytypes(orgdb)
#>  [1] "ACCNUM"       "ALIAS"        "ENSEMBL"      "ENSEMBLPROT"  "ENSEMBLTRANS"
#>  [6] "ENTREZID"     "ENZYME"       "EVIDENCE"     "EVIDENCEALL"  "GENENAME"    
#> [11] "GENETYPE"     "GO"           "GOALL"        "IPI"          "MAP"         
#> [16] "OMIM"         "ONTOLOGY"     "ONTOLOGYALL"  "PATH"         "PFAM"        
#> [21] "PMID"         "PROSITE"      "REFSEQ"       "SYMBOL"       "UCSCKG"      
#> [26] "UNIPROT"

Check: identify CORUM complexes that have a subunit of interest

Get core set of complexes:

core <- getCorum(set = "core", organism = "Human")
#> Using cached version from 2023-02-26 15:10:34

Turn the CORUM complexes into a list of graph instances, where all nodes of a complex are connected to all other nodes of that complex with undirected edges.

core.glist <- corum2graphlist(core, subunit.id.type = "UNIPROT")

Identify complexes that have a subunit of interest:

has.cdk2 <- hasSubunit(core.glist, 
                       subunit = "CDK2",
                       id.type = "SYMBOL")

Check the answer:

table(has.cdk2)
#> has.cdk2
#> FALSE  TRUE 
#>  2408     9
cdk2.glist <- core.glist[has.cdk2]
lapply(cdk2.glist, function(g) unlist(graph::nodeData(g, attr = "SYMBOL")))
#> $CORUM311_Cell_cycle_kinase_complex_CDK2
#>   P12004   P24385   P24941   P38936 
#>   "PCNA"  "CCND1"   "CDK2" "CDKN1A" 
#> 
#> $`CORUM1003_RC_complex_(Replication_competent_complex)`
#>  P09884  P20248  P24941  P35249  P35250  P35251  P40937  P40938  Q14181 
#> "POLA1" "CCNA2"  "CDK2"  "RFC4"  "RFC2"  "RFC1"  "RFC5"  "RFC3" "POLA2" 
#> 
#> $`CORUM1004_RC_complex_during_S-phase_of_cell_cycle`
#>  P09874  P09884  P11387  P15927  P18858  P20248  P24941  P27694  P28340  P35244 
#> "PARP1" "POLA1"  "TOP1"  "RPA2"  "LIG1" "CCNA2"  "CDK2"  "RPA1" "POLD1"  "RPA3" 
#>  P35250  P35251  Q07864 
#>  "RFC2"  "RFC1"  "POLE" 
#> 
#> $`CORUM1656_p27-cyclinE-CDK2_complex`
#>   P24864   P24941   P46527 
#>  "CCNE1"   "CDK2" "CDKN1B" 
#> 
#> $`CORUM3015_p27-cyclinE-Cdk2_-_Ubiquitin_E3_ligase_(SKP1A,_SKP2,_CUL1,_CKS1B,_RBX1)_complex`
#>   P24864   P24941   P46527   P61024   P62877   P63208   Q13309   Q13616 
#>  "CCNE1"   "CDK2" "CDKN1B"  "CKS1B"   "RBX1"   "SKP1"   "SKP2"   "CUL1" 
#> 
#> $`CORUM5556_CDK2-CCNA2_complex`
#>  P20248  P24941 
#> "CCNA2"  "CDK2" 
#> 
#> $`CORUM5559_CDC2-CCNA2-CDK2_complex`
#>  P06493  P20248  P24941 
#>  "CDK1" "CCNA2"  "CDK2" 
#> 
#> $`CORUM5560_CDK2-CCNE1_complex`
#>  P24864  P24941 
#> "CCNE1"  "CDK2" 
#> 
#> $`CORUM6589_E2F-1-DP-1-cyclinA-CDK2_complex`
#>  P24941  P78396  Q01094  Q14186 
#>  "CDK2" "CCNA1"  "E2F1" "TFDP1"

We can then also inspect the graph with plotting utilities from the Rgraphviz package:

plot(cdk2.glist[[1]], main = names(cdk2.glist)[1])

Check: extract BioPlex PPIs for a CORUM complex

Get the latest version of the 293T PPI network:

bp.293t <- getBioPlex(cell.line = "293T", version = "3.0")
#> Using cached version from 2023-02-26 15:10:40

Turn the BioPlex PPI network into one big graph where bait and prey relationship are represented by directed edges from bait to prey.

bp.gr <- bioplex2graph(bp.293t)

Now we can also easily pull out a BioPlex subnetwork for a CORUM complex of interest:

n <- graph::nodes(cdk2.glist[[1]])
bp.sgr <- graph::subGraph(n, bp.gr)
bp.sgr
#> A graphNEL graph with directed edges
#> Number of Nodes = 4 
#> Number of Edges = 5

Check: identify interacting domains for a PFAM domain of interest

Add PFAM domain annotations to the node metadata:

bp.gr <- BioPlex::annotatePFAM(bp.gr, orgdb)

Create a map from PFAM to UNIPROT:

unip2pfam <- graph::nodeData(bp.gr, graph::nodes(bp.gr), "PFAM")
pfam2unip <- stack(unip2pfam)
pfam2unip <- split(as.character(pfam2unip$ind), pfam2unip$values)
head(pfam2unip, 2)
#> $PF00001
#>  [1] "P28566" "P25106" "P23945" "Q9HBX9" "P16473" "P04201" "Q9HC97" "P30968"
#>  [9] "Q9Y2T6" "Q14330" "P46089" "Q15391" "Q9BXA5" "Q13304" "P61073" "P21462"
#> [17] "P25090" "Q99679" "P21730" "P30556" "P43088" "P32246" "P32249" "Q9Y2T5"
#> [25] "Q7Z602" "P43657" "O00398" "Q9H244" "Q86VZ1" "Q9NPB9" "Q99788" "P51684"
#> [33] "P35414" "O00590" "Q9H1Y3" "P55085" "O15218" "Q9GZQ4" "P25101" "Q9NS66"
#> [41] "Q9NQS5" "P21453" "P14416" "P24530" "P32239" "Q16581" "O00421" "Q9UHM6"
#> [49] "Q8N6U8" "P20309" "O15354" "Q9BXC0" "P47775" "P30550" "P49146" "P47900"
#> [57] "Q8TDU9" "P25103" "P35372" "P41597" "Q9P296" "P28335" "O95136" "P08173"
#> [65] "P29371" "P41146" "P43119" "O95977" "Q9HBW0" "Q99677" "Q9BXB1" "Q8WXD0"
#> [73] "O43193" "P30989" "Q8NGU9" "P47901" "P22888" "Q9GZN0" "P21917" "O60755"
#> [81] "Q8TDV0" "O43614" "Q9NS67" "P08912" "Q9UPC5" "Q8TDV2" "Q92633" "Q9NQ55"
#> [89] "Q13585" "Q9UBY5" "Q9H228" "P28222"
#> 
#> $PF00002
#>  [1] "Q8IZP9" "P41587" "Q8IZF4" "P49190" "P32241" "P47871" "P48960" "Q8IZF5"
#>  [9] "O14514" "Q03431" "Q9NYQ6" "Q9HCU4" "Q8WXG9" "Q9NYQ7" "O60242" "O60241"
#> [17] "Q9HAR2" "O94910" "Q8IWK6" "O95490" "Q96PE1" "Q86SQ4"

Let’s focus on PF02023, corresponding to the zinc finger-associated SCAN domain. For each protein containing the SCAN domain, we now extract PFAM domains connected to the SCAN domain by an edge in the BioPlex network.

scan.unip <- pfam2unip[["PF02023"]]
getIAPfams <- function(n) graph::nodeData(bp.gr, graph::edges(bp.gr)[[n]], "PFAM")
unip2iapfams <- lapply(scan.unip, getIAPfams)
unip2iapfams <- lapply(unip2iapfams, unlist)
names(unip2iapfams) <- scan.unip

Looking at the top 5 PFAM domains most frequently connected to the SCAN domain by an edge in the BioPlex network …

pfam2iapfams <- unlist(unip2iapfams)
sort(table(pfam2iapfams), decreasing = TRUE)[1:5]
#> pfam2iapfams
#> PF02023 PF00096 PF01352 PF06467 PF00249 
#>     208     169     100      14       8

… we find PF02023, the SCAN domain itself, and PF00096, a C2H2 type zinc finger domain. This finding is consistent with results reported in the BioPlex 3.0 publication.

See also the PFAM domain-domain association analysis vignette for a more comprehensive analysis of PFAM domain associations in the BioPlex network.

Check: agreement between CNV tracks

Genomic data from whole-genome sequencing for six different lineages of the human embryonic kidney HEK293 cell line can be obtained from hek293genome.org.

This includes copy number variation (CNV) data for the 293T cell line. Available CNV tracks include (i) CNV regions inferred from sequencing read-depth analysis, and (ii) CNV regions inferred from Illumina SNP arrays.

Here, we check agreement between inferred copy numbers from both assay types.

We start by obtaining genomic coordinates and copy number scores from the sequencing track …

cnv.hmm <- getHEK293GenomeTrack(track = "cnv.hmm", cell.line = "293T")
#> Using cached version from 2023-02-26 15:10:50
cnv.hmm
#> GRanges object with 12382 ranges and 1 metadata column:
#>           seqnames              ranges strand |     score
#>              <Rle>           <IRanges>  <Rle> | <numeric>
#>       [1]     chr1       823231-829231      * |      3.26
#>       [2]     chr1       835231-913231      * |      3.08
#>       [3]     chr1      923231-1063231      * |      3.20
#>       [4]     chr1     1079231-1213231      * |      3.21
#>       [5]     chr1     1223231-1399231      * |      3.27
#>       ...      ...                 ...    ... .       ...
#>   [12378]     chrX 154750237-154762237      * |      3.96
#>   [12379]     chrX 154778237-154780237      * |      4.02
#>   [12380]     chrX 154802237-154822237      * |      3.79
#>   [12381]     chrX 154842237-154846237      * |      3.85
#>   [12382]     chrM             0-12000      * |      8.82
#>   -------
#>   seqinfo: 24 sequences from hg18 genome; no seqlengths

… and from the SNP track.

cnv.snp <- getHEK293GenomeTrack(track = "cnv.snp", cell.line = "293T")
#> Using cached version from 2023-02-26 15:10:52
cnv.snp
#> GRanges object with 204 ranges and 1 metadata column:
#>         seqnames              ranges strand |     score
#>            <Rle>           <IRanges>  <Rle> | <integer>
#>     [1]     chr1      742429-5117504      * |         3
#>     [2]     chr1    5126548-27691288      * |         4
#>     [3]     chr1   27696717-33934376      * |         6
#>     [4]     chr1   33946560-48944728      * |         4
#>     [5]     chr1   48956914-50523337      * |         2
#>     ...      ...                 ...    ... .       ...
#>   [200]     chrX 106780442-127925246      * |         5
#>   [201]     chrX 127931857-131443550      * |         6
#>   [202]     chrX 131541633-136116260      * |         5
#>   [203]     chrX 136125141-147982191      * |         4
#>   [204]     chrX 147983995-154582606      * |         5
#>   -------
#>   seqinfo: 23 sequences from hg18 genome; no seqlengths

We reduce the check for agreement between both CNV tracks by transferring copy numbers to overlapping genes, and subsequently, assess the agreement between the resulting gene copy numbers for both tracks.

As the genomic coordinates from both CNV tracks is based on the hg18 human genome assembly, we obtain gene coordinates for hg18 from AnnotationHub:

AnnotationHub::query(ah, c("TxDb", "Homo sapiens"))
#> AnnotationHub with 39 records
#> # snapshotDate(): 2022-10-31
#> # $dataprovider: GENCODE, UCSC, NCBI, tRNAdb, snoRNAdb, RMBase v2.0
#> # $species: Homo sapiens
#> # $rdataclass: TxDb, SQLiteFile, ChainFile, FaFile
#> # additional mcols(): taxonomyid, genome, description,
#> #   coordinate_1_based, maintainer, rdatadateadded, preparerclass, tags,
#> #   rdatapath, sourceurl, sourcetype 
#> # retrieve records with, e.g., 'object[["AH52256"]]' 
#> 
#>              title                                             
#>   AH52256  | TxDb.Hsapiens.BioMart.igis.sqlite                 
#>   AH52257  | TxDb.Hsapiens.UCSC.hg18.knownGene.sqlite          
#>   AH52258  | TxDb.Hsapiens.UCSC.hg19.knownGene.sqlite          
#>   AH52259  | TxDb.Hsapiens.UCSC.hg19.lincRNAsTranscripts.sqlite
#>   AH52260  | TxDb.Hsapiens.UCSC.hg38.knownGene.sqlite          
#>   ...        ...                                               
#>   AH92592  | TxDb.Hsapiens.UCSC.hg38.refGene.sqlite            
#>   AH97949  | TxDb.Hsapiens.UCSC.hg38.knownGene.sqlite          
#>   AH100418 | TxDb.Hsapiens.UCSC.hg38.knownGene.sqlite          
#>   AH100419 | TxDb.Hsapiens.UCSC.hg38.refGene.sqlite            
#>   AH107068 | TxDb.Hsapiens.UCSC.hg38.knownGene.sqlite
txdb <- ah[["AH52257"]]
#> loading from cache
#> Loading required package: GenomicFeatures
gs <- GenomicFeatures::genes(txdb)
#>   379 genes were dropped because they have exons located on both strands
#>   of the same reference sequence or on more than one reference sequence,
#>   so cannot be represented by a single genomic range.
#>   Use 'single.strand.genes.only=FALSE' to get all the genes in a
#>   GRangesList object, or use suppressMessages() to suppress this message.
gs
#> GRanges object with 19742 ranges and 1 metadata column:
#>         seqnames              ranges strand |     gene_id
#>            <Rle>           <IRanges>  <Rle> | <character>
#>       1    chr19   63549984-63565932      - |           1
#>      10     chr8   18293035-18303003      + |          10
#>     100    chr20   42681577-42713790      - |         100
#>    1000    chr18   23784933-24011189      - |        1000
#>   10000     chr1 241718158-242073207      - |       10000
#>     ...      ...                 ...    ... .         ...
#>    9991     chr9 114020538-114135733      - |        9991
#>    9992    chr21   34658193-34665310      + |        9992
#>    9993    chr22   17403795-17489967      - |        9993
#>    9994     chr6   90596334-90640876      + |        9994
#>    9997    chr22   49308863-49310900      - |        9997
#>   -------
#>   seqinfo: 49 sequences (1 circular) from hg18 genome

We then transfer SNP-inferred copy numbers to genes by overlap …

olaps <- GenomicRanges::findOverlaps(gs, cnv.snp)
joined <- gs[S4Vectors::queryHits(olaps)]
joined$score <- cnv.snp$score[S4Vectors::subjectHits(olaps)]
joined
#> GRanges object with 19555 ranges and 2 metadata columns:
#>         seqnames              ranges strand |     gene_id     score
#>            <Rle>           <IRanges>  <Rle> | <character> <integer>
#>       1    chr19   63549984-63565932      - |           1         4
#>      10     chr8   18293035-18303003      + |          10         2
#>     100    chr20   42681577-42713790      - |         100         4
#>    1000    chr18   23784933-24011189      - |        1000         3
#>   10000     chr1 241718158-242073207      - |       10000         6
#>     ...      ...                 ...    ... .         ...       ...
#>    9991     chr9 114020538-114135733      - |        9991         3
#>    9992    chr21   34658193-34665310      + |        9992         4
#>    9993    chr22   17403795-17489967      - |        9993         5
#>    9994     chr6   90596334-90640876      + |        9994         3
#>    9997    chr22   49308863-49310900      - |        9997         4
#>   -------
#>   seqinfo: 49 sequences (1 circular) from hg18 genome

… and, analogously, transfer sequencing-inferred copy numbers to genes by overlap.

olaps <- GenomicRanges::findOverlaps(gs, cnv.hmm)
joined2 <- gs[S4Vectors::queryHits(olaps)]
joined2$score <- cnv.hmm$score[S4Vectors::subjectHits(olaps)]
joined2
#> GRanges object with 22366 ranges and 2 metadata columns:
#>         seqnames              ranges strand |     gene_id     score
#>            <Rle>           <IRanges>  <Rle> | <character> <numeric>
#>       1    chr19   63549984-63565932      - |           1      3.18
#>      10     chr8   18293035-18303003      + |          10      1.96
#>     100    chr20   42681577-42713790      - |         100      2.98
#>    1000    chr18   23784933-24011189      - |        1000      2.94
#>   10000     chr1 241718158-242073207      - |       10000      5.92
#>     ...      ...                 ...    ... .         ...       ...
#>    9990    chr15   32309489-32417557      - |        9990      2.26
#>    9991     chr9 114020538-114135733      - |        9991      3.45
#>    9993    chr22   17403795-17489967      - |        9993      4.48
#>    9994     chr6   90596334-90640876      + |        9994      3.14
#>    9997    chr22   49308863-49310900      - |        9997      3.35
#>   -------
#>   seqinfo: 49 sequences (1 circular) from hg18 genome

We then restrict both tracks to common genes.

isect <- intersect(names(joined), names(joined2))
joined <- joined[isect]
joined2 <- joined2[isect]

Now, can assess agreement by testing the correlation between SNP-inferred gene copy numbers and the corresponding sequencing-inferred gene copy numbers.

cor(joined$score, joined2$score)
#> [1] 0.7953383
cor.test(joined$score, joined2$score)
#> 
#>  Pearson's product-moment correlation
#> 
#> data:  joined$score and joined2$score
#> t = 176.07, df = 18008, p-value < 2.2e-16
#> alternative hypothesis: true correlation is not equal to 0
#> 95 percent confidence interval:
#>  0.7899089 0.8006431
#> sample estimates:
#>       cor 
#> 0.7953383

We also inspect the correlation via a boxplot.

spl <- split(joined2$score, joined$score)
boxplot(spl, xlab = "SNP-inferred copy number", ylab = "sequencing-inferred copy number")
rho <- cor(joined$score, joined2$score)
rho <- paste("cor", round(rho, digits=3), sep=" = ")

p <- cor.test(joined$score, joined2$score)
p <- p$p.value
p <- "   p < 2.2e-16"

legend("topright", legend=c(rho, p))

Check: expressed genes are showing up as prey (293T cells)

Get RNA-seq data for HEK293 cells from GEO: GSE122425

se <- getGSE122425()
#> Using cached version from 2023-02-26 15:11:00
se
#> class: SummarizedExperiment 
#> dim: 57905 6 
#> metadata(0):
#> assays(2): raw rpkm
#> rownames(57905): ENSG00000223972 ENSG00000227232 ... ENSG00000231514
#>   ENSG00000235857
#> rowData names(4): SYMBOL KO GO length
#> colnames(6): GSM3466389 GSM3466390 ... GSM3466393 GSM3466394
#> colData names(41): title geo_accession ... passages.ch1 strain.ch1

Inspect expression of prey genes:

bait <- unique(bp.293t$SymbolA)
length(bait)
#> [1] 8995
prey <- unique(bp.293t$SymbolB)
length(prey)
#> [1] 10419
ind <- match(prey, rowData(se)$SYMBOL)
par(las = 2)
boxplot(log2(assay(se, "rpkm") + 0.5)[ind,], 
        names = se$title, 
        ylab = "log2 RPKM")

How many prey genes are expressed (raw read count > 0) in all 3 WT reps:

# background: how many genes in total are expressed in all three WT reps
gr0 <- rowSums(assay(se)[,1:3] > 0)
table(gr0 == 3)
#> 
#> FALSE  TRUE 
#> 33842 24063
# prey: expressed in all three WT reps
table(gr0[ind] == 3)
#> 
#> FALSE  TRUE 
#>   599  9346
# prey: expressed in at least one WT rep
table(gr0[ind] > 0)
#> 
#> FALSE  TRUE 
#>   305  9640

Are prey genes overrepresented in the expressed genes?

exprTable <-
     matrix(c(9346, 1076, 14717, 32766),
            nrow = 2,
            dimnames = list(c("Expressed", "Not.expressed"),
                            c("In.prey.set", "Not.in.prey.set")))
exprTable
#>               In.prey.set Not.in.prey.set
#> Expressed            9346           14717
#> Not.expressed        1076           32766

Test using hypergeometric test (i.e. one-sided Fisher’s exact test):

fisher.test(exprTable, alternative = "greater")
#> 
#>  Fisher's Exact Test for Count Data
#> 
#> data:  exprTable
#> p-value < 2.2e-16
#> alternative hypothesis: true odds ratio is greater than 1
#> 95 percent confidence interval:
#>  18.29105      Inf
#> sample estimates:
#> odds ratio 
#>   19.34726

Alternatively: permutation test, i.e. repeatedly sample number of prey genes from the background, and assess how often we have as many or more than 9346 genes expressed:

permgr0 <- function(gr0, nr.genes = length(prey)) 
{
    ind <- sample(seq_along(gr0), nr.genes)
    sum(gr0[ind] == 3)
}
perms <- replicate(permgr0(gr0), 1000)
summary(perms)
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>    1000    1000    1000    1000    1000    1000
(sum(perms >= 9346) + 1) / 1001
#> [1] 0.000999001

Check: is there a relationship between prey frequency and prey expression level?

Check which genes turn up most frequently as prey:

prey.freq <- sort(table(bp.293t$SymbolB), decreasing = TRUE)
preys <- names(prey.freq)
prey.freq <- as.vector(prey.freq)
names(prey.freq) <- preys
head(prey.freq)
#> HSPA5 HSPA8 TUBB8   UBB  YBX1 YWHAH 
#>   199   192   176   173   139   132
summary(prey.freq)
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>    1.00    2.00    6.00   11.34   16.00  199.00
hist(prey.freq, breaks = 50, main = "", xlab = "Number of PPIs", ylab = "Number of genes")

Prey genes are involved in 11 PPIs on average.

There doesn’t seem to be a strong correlation between expression level and the frequency of gene to turn up as prey:

ind <- match(names(prey.freq), rowData(se)$SYMBOL)
rmeans <- rowMeans(assay(se, "rpkm")[ind, 1:3])
log.rmeans <- log2(rmeans + 0.5)
par(pch = 20)
plot( x = prey.freq,
      y = log.rmeans,
      xlab = "prey frequency",
      ylab = "log2 RPKM")

cor(prey.freq, 
    log.rmeans,
    use = "pairwise.complete.obs")
#> [1] 0.2035977

See also the BioNet maximum scoring subnetwork analysis vignette for a more comprehensive analysis of the 293T transcriptome data from GSE122425 when mapped onto BioPlex PPI network.

Check: differential protein expression (HEK293 vs. HCT116)

Get the relative protein expression data comparing 293T and HCT116 cells from Supplementary Table S4A of the BioPlex 3 paper:

bp.prot <- getBioplexProteome()
#> Using cached version from 2023-02-26 15:11:08
bp.prot
#> class: SummarizedExperiment 
#> dim: 9604 10 
#> metadata(0):
#> assays(1): exprs
#> rownames(9604): P0CG40 Q8IXZ3-4 ... Q9H3S5 Q8WYQ3
#> rowData names(5): ENTREZID SYMBOL nr.peptides log2ratio adj.pvalue
#> colnames(10): HCT1 HCT2 ... HEK4 HEK5
#> colData names(1): cell.line
rowData(bp.prot)
#> DataFrame with 9604 rows and 5 columns
#>             ENTREZID      SYMBOL nr.peptides log2ratio  adj.pvalue
#>          <character> <character>   <integer> <numeric>   <numeric>
#> P0CG40     100131390         SP9           1 -2.819071 6.66209e-08
#> Q8IXZ3-4      221833         SP8           3 -3.419888 6.94973e-07
#> P55011          6558     SLC12A2           4  0.612380 4.85602e-06
#> O60341         23028       KDM1A           7 -0.319695 5.08667e-04
#> O14654          8471        IRS4           4 -5.951096 1.45902e-06
#> ...              ...         ...         ...       ...         ...
#> Q9H6X4         80194     TMEM134           2 -0.379342 7.67195e-05
#> Q9BS91         55032     SLC35A5           1 -2.237634 8.75523e-05
#> Q9UKJ5         26511       CHIC2           1 -0.614932 1.78756e-03
#> Q9H3S5         93183        PIGM           1 -1.011397 8.91589e-06
#> Q8WYQ3        400916     CHCHD10           1  0.743852 1.17163e-03

A couple of quick sanity checks:

  1. The relative abundances are scaled to sum up to 100% for each protein:
rowSums(assay(bp.prot)[1:5,]) 
#>    P0CG40  Q8IXZ3-4    P55011    O60341    O14654 
#>  99.99994  99.99991  99.99996 100.00011 100.00006
  1. The rowData column log2ratio corresponds to the mean of the five HEK samples, divided by the mean of the five HCT samples (and then taking log2 of it):
ratio <- rowMeans(assay(bp.prot)[1:5, 1:5]) / rowMeans(assay(bp.prot)[1:5, 6:10])
log2(ratio)
#>     P0CG40   Q8IXZ3-4     P55011     O60341     O14654 
#> -2.8190710 -3.4198879  0.6123799 -0.3196953 -5.9510960
  1. The rowData column adj.pvalue stores Benjamini-Hochberg adjusted p-values from a t-test between the five HEK samples and the five HCT samples:
t.test(assay(bp.prot)[1, 1:5], assay(bp.prot)[1, 6:10])
#> 
#>  Welch Two Sample t-test
#> 
#> data:  assay(bp.prot)[1, 1:5] and assay(bp.prot)[1, 6:10]
#> t = -27.898, df = 7.5779, p-value = 6.482e-09
#> alternative hypothesis: true difference in means is not equal to 0
#> 95 percent confidence interval:
#>  -16.29035 -13.78047
#> sample estimates:
#> mean of x mean of y 
#>  2.482288 17.517700

The Transcriptome-Proteome analysis vignette also explores the agreement between differential gene expression and differential protein expression when comparing HEK293 against HCT116 cells.

SessionInfo

sessionInfo()
#> R version 4.2.0 (2022-04-22)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 20.04.5 LTS
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] stats4    stats     graphics  grDevices utils     datasets  methods  
#> [8] base     
#> 
#> other attached packages:
#>  [1] GenomicFeatures_1.50.4      graph_1.76.0               
#>  [3] AnnotationHub_3.6.0         BiocFileCache_2.6.1        
#>  [5] dbplyr_2.2.0                AnnotationDbi_1.60.0       
#>  [7] BioPlex_1.5.4               SummarizedExperiment_1.28.0
#>  [9] Biobase_2.58.0              GenomicRanges_1.50.2       
#> [11] GenomeInfoDb_1.34.9         IRanges_2.32.0             
#> [13] S4Vectors_0.36.1            BiocGenerics_0.44.0        
#> [15] MatrixGenerics_1.10.0       matrixStats_0.62.0         
#> [17] BiocStyle_2.26.0           
#> 
#> loaded via a namespace (and not attached):
#>  [1] bitops_1.0-7                  fs_1.5.2                     
#>  [3] bit64_4.0.5                   progress_1.2.2               
#>  [5] filelock_1.0.2                httr_1.4.3                   
#>  [7] rprojroot_2.0.3               tools_4.2.0                  
#>  [9] bslib_0.3.1                   utf8_1.2.2                   
#> [11] R6_2.5.1                      DBI_1.1.3                    
#> [13] prettyunits_1.1.1             tidyselect_1.1.2             
#> [15] bit_4.0.4                     curl_4.3.2                   
#> [17] compiler_4.2.0                textshaping_0.3.6            
#> [19] cli_3.3.0                     xml2_1.3.3                   
#> [21] desc_1.4.1                    DelayedArray_0.24.0          
#> [23] rtracklayer_1.58.0            bookdown_0.27                
#> [25] sass_0.4.1                    rappdirs_0.3.3               
#> [27] pkgdown_2.0.4                 Rsamtools_2.14.0             
#> [29] systemfonts_1.0.4             stringr_1.4.0                
#> [31] digest_0.6.29                 rmarkdown_2.14               
#> [33] XVector_0.38.0                pkgconfig_2.0.3              
#> [35] htmltools_0.5.2               highr_0.9                    
#> [37] fastmap_1.1.0                 rlang_1.0.2                  
#> [39] RSQLite_2.2.14                shiny_1.7.1                  
#> [41] BiocIO_1.8.0                  jquerylib_0.1.4              
#> [43] generics_0.1.2                jsonlite_1.8.0               
#> [45] BiocParallel_1.32.5           dplyr_1.0.9                  
#> [47] RCurl_1.98-1.7                magrittr_2.0.3               
#> [49] GenomeInfoDbData_1.2.9        Matrix_1.4-1                 
#> [51] Rcpp_1.0.8.3                  fansi_1.0.3                  
#> [53] lifecycle_1.0.1               stringi_1.7.6                
#> [55] yaml_2.3.5                    zlibbioc_1.44.0              
#> [57] grid_4.2.0                    blob_1.2.3                   
#> [59] parallel_4.2.0                promises_1.2.0.1             
#> [61] ExperimentHub_2.6.0           crayon_1.5.1                 
#> [63] lattice_0.20-45               Biostrings_2.66.0            
#> [65] hms_1.1.1                     KEGGREST_1.38.0              
#> [67] knitr_1.39                    pillar_1.7.0                 
#> [69] rjson_0.2.21                  codetools_0.2-18             
#> [71] biomaRt_2.54.0                XML_3.99-0.10                
#> [73] glue_1.6.2                    BiocVersion_3.16.0           
#> [75] evaluate_0.15                 BiocManager_1.30.18          
#> [77] png_0.1-7                     vctrs_0.4.1                  
#> [79] httpuv_1.6.5                  purrr_0.3.4                  
#> [81] assertthat_0.2.1              cachem_1.0.6                 
#> [83] xfun_0.31                     mime_0.12                    
#> [85] xtable_1.8-4                  restfulr_0.0.15              
#> [87] later_1.3.0                   ragg_1.2.2                   
#> [89] tibble_3.1.7                  GenomicAlignments_1.34.0     
#> [91] memoise_2.0.1                 ellipsis_0.3.2               
#> [93] interactiveDisplayBase_1.36.0