Intro to Tidyverse

Data manipulation using dplyr and tidyr

Bracket subsetting is handy, but it can be cumbersome and difficult to read, especially for complicated operations.

Some packages can greatly facilitate our task when we manipulate data. Packages in R are basically sets of additional functions that let you do more stuff. The functions we’ve been using so far, like str() or data.frame(), come built into R; Loading packages can give you access to other specific functions. Before you use a package for the first time you need to install it on your machine, and then you should import it in every subsequent R session when you need it.

  • The package dplyr provides powerful tools for data manipulation tasks. It is built to work directly with data frames, with many manipulation tasks optimised.

  • As we will see latter on, sometimes we want a data frame to be reshaped to be able to do some specific analyses or for visualisation. The package tidyr addresses this common problem of reshaping data and provides tools for manipulating data in a tidy way.

To learn more about dplyr and tidyr after the workshop, you may want to check out this handy data transformation with dplyr cheatsheet and this one about tidyr.

  • The tidyverse package is an “umbrella-package” that installs several useful packages for data analysis which work well together, such as tidyr, dplyr, ggplot2, tibble, etc. These packages help us to work and interact with the data. They allow us to do many things with your data, such as subsetting, transforming, visualising, etc.

If you did the set up, you should have already installed the tidyverse package. Check to see if you have it by trying to load in from the library:

## load the tidyverse packages, incl. dplyr
library("tidyverse")

If you got an error message there is no package called ‘tidyverse’ then you have not installed the package yet for this version of R. To install the tidyverse package type:

BiocManager::install("tidyverse")

If you had to install the tidyverse package, do not forget to load it in this R session by using the library() command above!

Loading data with tidyverse

Instead of read.csv(), we will read in our data using the read_csv() function (notice the _ instead of the .), from the tidyverse package readr.

rna <- read_csv("data/rnaseq.csv")

## view the data
rna
# A tibble: 32,428 × 19
   gene    sample  expression organism   age sex   infection strain  time tissue
   <chr>   <chr>        <dbl> <chr>    <dbl> <chr> <chr>     <chr>  <dbl> <chr> 
 1 Asl     GSM254…       1170 Mus mus…     8 Fema… Influenz… C57BL…     8 Cereb…
 2 Apod    GSM254…      36194 Mus mus…     8 Fema… Influenz… C57BL…     8 Cereb…
 3 Cyp2d22 GSM254…       4060 Mus mus…     8 Fema… Influenz… C57BL…     8 Cereb…
 4 Klk6    GSM254…        287 Mus mus…     8 Fema… Influenz… C57BL…     8 Cereb…
 5 Fcrls   GSM254…         85 Mus mus…     8 Fema… Influenz… C57BL…     8 Cereb…
 6 Slc2a4  GSM254…        782 Mus mus…     8 Fema… Influenz… C57BL…     8 Cereb…
 7 Exd2    GSM254…       1619 Mus mus…     8 Fema… Influenz… C57BL…     8 Cereb…
 8 Gjc2    GSM254…        288 Mus mus…     8 Fema… Influenz… C57BL…     8 Cereb…
 9 Plp1    GSM254…      43217 Mus mus…     8 Fema… Influenz… C57BL…     8 Cereb…
10 Gnb4    GSM254…       1071 Mus mus…     8 Fema… Influenz… C57BL…     8 Cereb…
# ℹ 32,418 more rows
# ℹ 9 more variables: mouse <dbl>, ENTREZID <dbl>, product <chr>,
#   ensembl_gene_id <chr>, external_synonym <chr>, chromosome_name <chr>,
#   gene_biotype <chr>, phenotype_description <chr>,
#   hsapiens_homolog_associated_gene_name <chr>

Notice that the class of the data is now referred to as a “tibble”.

Tibbles tweak some of the behaviors of the data frame objects we introduced in the previously. The data structure is very similar to a data frame. For our purposes the only differences are that:

  1. It displays the data type of each column under its name. Note that <dbl> is a data type defined to hold numeric values with decimal points.

  2. It only prints the first few rows of data and only as many columns as fit on one screen.

We are now going to learn some of the most common dplyr functions:

  • select(): subset columns
  • filter(): subset rows on conditions
  • mutate(): create new columns by using information from other columns
  • group_by() and summarise(): create summary statistics on grouped data
  • arrange(): sort results
  • count(): count discrete values

Selecting columns and filtering rows

To select columns of a data frame, use select(). The first argument to this function is the data frame (rna), and the subsequent arguments are the columns to keep.

select(rna, gene, sample, tissue, expression)
# A tibble: 32,428 × 4
   gene    sample     tissue     expression
   <chr>   <chr>      <chr>           <dbl>
 1 Asl     GSM2545336 Cerebellum       1170
 2 Apod    GSM2545336 Cerebellum      36194
 3 Cyp2d22 GSM2545336 Cerebellum       4060
 4 Klk6    GSM2545336 Cerebellum        287
 5 Fcrls   GSM2545336 Cerebellum         85
 6 Slc2a4  GSM2545336 Cerebellum        782
 7 Exd2    GSM2545336 Cerebellum       1619
 8 Gjc2    GSM2545336 Cerebellum        288
 9 Plp1    GSM2545336 Cerebellum      43217
10 Gnb4    GSM2545336 Cerebellum       1071
# ℹ 32,418 more rows

To select all columns except certain ones, put a “-” in front of the variable to exclude it.

select(rna, -tissue, -organism)
# A tibble: 32,428 × 17
   gene    sample   expression   age sex   infection strain  time mouse ENTREZID
   <chr>   <chr>         <dbl> <dbl> <chr> <chr>     <chr>  <dbl> <dbl>    <dbl>
 1 Asl     GSM2545…       1170     8 Fema… Influenz… C57BL…     8    14   109900
 2 Apod    GSM2545…      36194     8 Fema… Influenz… C57BL…     8    14    11815
 3 Cyp2d22 GSM2545…       4060     8 Fema… Influenz… C57BL…     8    14    56448
 4 Klk6    GSM2545…        287     8 Fema… Influenz… C57BL…     8    14    19144
 5 Fcrls   GSM2545…         85     8 Fema… Influenz… C57BL…     8    14    80891
 6 Slc2a4  GSM2545…        782     8 Fema… Influenz… C57BL…     8    14    20528
 7 Exd2    GSM2545…       1619     8 Fema… Influenz… C57BL…     8    14    97827
 8 Gjc2    GSM2545…        288     8 Fema… Influenz… C57BL…     8    14   118454
 9 Plp1    GSM2545…      43217     8 Fema… Influenz… C57BL…     8    14    18823
10 Gnb4    GSM2545…       1071     8 Fema… Influenz… C57BL…     8    14    14696
# ℹ 32,418 more rows
# ℹ 7 more variables: product <chr>, ensembl_gene_id <chr>,
#   external_synonym <chr>, chromosome_name <chr>, gene_biotype <chr>,
#   phenotype_description <chr>, hsapiens_homolog_associated_gene_name <chr>

This will select all the variables in rna except tissue and organism.

To choose rows based on a specific criteria, use filter():

filter(rna, sex == "Male")
# A tibble: 14,740 × 19
   gene    sample  expression organism   age sex   infection strain  time tissue
   <chr>   <chr>        <dbl> <chr>    <dbl> <chr> <chr>     <chr>  <dbl> <chr> 
 1 Asl     GSM254…        626 Mus mus…     8 Male  Influenz… C57BL…     4 Cereb…
 2 Apod    GSM254…      13021 Mus mus…     8 Male  Influenz… C57BL…     4 Cereb…
 3 Cyp2d22 GSM254…       2171 Mus mus…     8 Male  Influenz… C57BL…     4 Cereb…
 4 Klk6    GSM254…        448 Mus mus…     8 Male  Influenz… C57BL…     4 Cereb…
 5 Fcrls   GSM254…        180 Mus mus…     8 Male  Influenz… C57BL…     4 Cereb…
 6 Slc2a4  GSM254…        313 Mus mus…     8 Male  Influenz… C57BL…     4 Cereb…
 7 Exd2    GSM254…       2366 Mus mus…     8 Male  Influenz… C57BL…     4 Cereb…
 8 Gjc2    GSM254…        310 Mus mus…     8 Male  Influenz… C57BL…     4 Cereb…
 9 Plp1    GSM254…      53126 Mus mus…     8 Male  Influenz… C57BL…     4 Cereb…
10 Gnb4    GSM254…       1355 Mus mus…     8 Male  Influenz… C57BL…     4 Cereb…
# ℹ 14,730 more rows
# ℹ 9 more variables: mouse <dbl>, ENTREZID <dbl>, product <chr>,
#   ensembl_gene_id <chr>, external_synonym <chr>, chromosome_name <chr>,
#   gene_biotype <chr>, phenotype_description <chr>,
#   hsapiens_homolog_associated_gene_name <chr>
filter(rna, sex == "Male" & infection == "NonInfected")
# A tibble: 4,422 × 19
   gene    sample  expression organism   age sex   infection strain  time tissue
   <chr>   <chr>        <dbl> <chr>    <dbl> <chr> <chr>     <chr>  <dbl> <chr> 
 1 Asl     GSM254…        535 Mus mus…     8 Male  NonInfec… C57BL…     0 Cereb…
 2 Apod    GSM254…      13668 Mus mus…     8 Male  NonInfec… C57BL…     0 Cereb…
 3 Cyp2d22 GSM254…       2008 Mus mus…     8 Male  NonInfec… C57BL…     0 Cereb…
 4 Klk6    GSM254…       1101 Mus mus…     8 Male  NonInfec… C57BL…     0 Cereb…
 5 Fcrls   GSM254…        375 Mus mus…     8 Male  NonInfec… C57BL…     0 Cereb…
 6 Slc2a4  GSM254…        249 Mus mus…     8 Male  NonInfec… C57BL…     0 Cereb…
 7 Exd2    GSM254…       3126 Mus mus…     8 Male  NonInfec… C57BL…     0 Cereb…
 8 Gjc2    GSM254…        791 Mus mus…     8 Male  NonInfec… C57BL…     0 Cereb…
 9 Plp1    GSM254…      98658 Mus mus…     8 Male  NonInfec… C57BL…     0 Cereb…
10 Gnb4    GSM254…       2437 Mus mus…     8 Male  NonInfec… C57BL…     0 Cereb…
# ℹ 4,412 more rows
# ℹ 9 more variables: mouse <dbl>, ENTREZID <dbl>, product <chr>,
#   ensembl_gene_id <chr>, external_synonym <chr>, chromosome_name <chr>,
#   gene_biotype <chr>, phenotype_description <chr>,
#   hsapiens_homolog_associated_gene_name <chr>

Now let’s imagine we are interested in the human homologs of the mouse genes analysed in this dataset. This information can be found in the last column of the rna tibble, named hsapiens_homolog_associated_gene_name. To visualise it easily, we will create a new table containing just the 2 columns gene and hsapiens_homolog_associated_gene_name.

genes <- select(rna, gene, hsapiens_homolog_associated_gene_name)
genes
# A tibble: 32,428 × 2
   gene    hsapiens_homolog_associated_gene_name
   <chr>   <chr>                                
 1 Asl     ASL                                  
 2 Apod    APOD                                 
 3 Cyp2d22 CYP2D6                               
 4 Klk6    KLK6                                 
 5 Fcrls   FCRL2                                
 6 Slc2a4  SLC2A4                               
 7 Exd2    EXD2                                 
 8 Gjc2    GJC2                                 
 9 Plp1    PLP1                                 
10 Gnb4    GNB4                                 
# ℹ 32,418 more rows

Some mouse genes have no human homologs. These can be retrieved using filter() and the is.na() function, that determines whether something is an NA.

filter(genes, is.na(hsapiens_homolog_associated_gene_name))
# A tibble: 4,290 × 2
   gene     hsapiens_homolog_associated_gene_name
   <chr>    <chr>                                
 1 Prodh    <NA>                                 
 2 Tssk5    <NA>                                 
 3 Vmn2r1   <NA>                                 
 4 Gm10654  <NA>                                 
 5 Hexa     <NA>                                 
 6 Sult1a1  <NA>                                 
 7 Gm6277   <NA>                                 
 8 Tmem198b <NA>                                 
 9 Adam1a   <NA>                                 
10 Ebp      <NA>                                 
# ℹ 4,280 more rows

If we want to keep only mouse genes that have a human homolog, we can insert a “!” symbol that negates the result, so we’re asking for every row where hsapiens_homolog_associated_gene_name is not an NA.

filter(genes, !is.na(hsapiens_homolog_associated_gene_name))
# A tibble: 28,138 × 2
   gene    hsapiens_homolog_associated_gene_name
   <chr>   <chr>                                
 1 Asl     ASL                                  
 2 Apod    APOD                                 
 3 Cyp2d22 CYP2D6                               
 4 Klk6    KLK6                                 
 5 Fcrls   FCRL2                                
 6 Slc2a4  SLC2A4                               
 7 Exd2    EXD2                                 
 8 Gjc2    GJC2                                 
 9 Plp1    PLP1                                 
10 Gnb4    GNB4                                 
# ℹ 28,128 more rows

Pipes

What if you want to select and filter at the same time? There are three ways to do this: use intermediate steps, nested functions, or pipes.

With intermediate steps, you create a temporary data frame and use that as input to the next function, like this:

rna2 <- filter(rna, sex == "Male")
rna3 <- select(rna2, gene, sample, tissue, expression)
rna3
# A tibble: 14,740 × 4
   gene    sample     tissue     expression
   <chr>   <chr>      <chr>           <dbl>
 1 Asl     GSM2545340 Cerebellum        626
 2 Apod    GSM2545340 Cerebellum      13021
 3 Cyp2d22 GSM2545340 Cerebellum       2171
 4 Klk6    GSM2545340 Cerebellum        448
 5 Fcrls   GSM2545340 Cerebellum        180
 6 Slc2a4  GSM2545340 Cerebellum        313
 7 Exd2    GSM2545340 Cerebellum       2366
 8 Gjc2    GSM2545340 Cerebellum        310
 9 Plp1    GSM2545340 Cerebellum      53126
10 Gnb4    GSM2545340 Cerebellum       1355
# ℹ 14,730 more rows

This is readable, but can clutter up your workspace with lots of intermediate objects that you have to name individually. With multiple steps, that can be hard to keep track of.

You can also nest functions (i.e. one function inside of another), like this:

rna3 <- select(filter(rna, sex == "Male"), gene, sample, tissue, expression)
rna3
# A tibble: 14,740 × 4
   gene    sample     tissue     expression
   <chr>   <chr>      <chr>           <dbl>
 1 Asl     GSM2545340 Cerebellum        626
 2 Apod    GSM2545340 Cerebellum      13021
 3 Cyp2d22 GSM2545340 Cerebellum       2171
 4 Klk6    GSM2545340 Cerebellum        448
 5 Fcrls   GSM2545340 Cerebellum        180
 6 Slc2a4  GSM2545340 Cerebellum        313
 7 Exd2    GSM2545340 Cerebellum       2366
 8 Gjc2    GSM2545340 Cerebellum        310
 9 Plp1    GSM2545340 Cerebellum      53126
10 Gnb4    GSM2545340 Cerebellum       1355
# ℹ 14,730 more rows

This is handy, but can be difficult to read if too many functions are nested, as R evaluates the expression from the inside out (in this case, filtering, then selecting).

The last option, pipes, are a recent addition to R. Pipes let you take the output of one function and send it directly to the next, which is useful when you need to do many things to the same dataset.

Pipes in R look like %>% (made available via the magrittr package) or |> (through base R). If you use RStudio, you can type the pipe with Ctrl + Shift + M if you have a PC or Cmd + Shift + M if you have a Mac.

In the above code, we use the pipe to send the rna dataset first through filter() to keep rows where sex is Male, then through select() to keep only the gene, sample, tissue, and expressioncolumns.

The pipe %>% takes the object on its left and passes it directly as the first argument to the function on its right, we don’t need to explicitly include the data frame as an argument to the filter() and select() functions any more.

rna %>%
  filter(sex == "Male") %>%
  select(gene, sample, tissue, expression)
# A tibble: 14,740 × 4
   gene    sample     tissue     expression
   <chr>   <chr>      <chr>           <dbl>
 1 Asl     GSM2545340 Cerebellum        626
 2 Apod    GSM2545340 Cerebellum      13021
 3 Cyp2d22 GSM2545340 Cerebellum       2171
 4 Klk6    GSM2545340 Cerebellum        448
 5 Fcrls   GSM2545340 Cerebellum        180
 6 Slc2a4  GSM2545340 Cerebellum        313
 7 Exd2    GSM2545340 Cerebellum       2366
 8 Gjc2    GSM2545340 Cerebellum        310
 9 Plp1    GSM2545340 Cerebellum      53126
10 Gnb4    GSM2545340 Cerebellum       1355
# ℹ 14,730 more rows

Some may find it helpful to read the pipe like the word “then”. For instance, in the above example, we took the data frame rna, then we filtered for rows with sex == "Male", then we selected columns gene, sample, tissue, and expression.

The dplyr functions by themselves are somewhat simple, but by combining them into linear workflows with the pipe, we can accomplish more complex manipulations of data frames.

If we want to create a new object with this smaller version of the data, we can assign it a new name:

rna3 <- rna %>%
  filter(sex == "Male") %>%
  select(gene, sample, tissue, expression)

rna3
# A tibble: 14,740 × 4
   gene    sample     tissue     expression
   <chr>   <chr>      <chr>           <dbl>
 1 Asl     GSM2545340 Cerebellum        626
 2 Apod    GSM2545340 Cerebellum      13021
 3 Cyp2d22 GSM2545340 Cerebellum       2171
 4 Klk6    GSM2545340 Cerebellum        448
 5 Fcrls   GSM2545340 Cerebellum        180
 6 Slc2a4  GSM2545340 Cerebellum        313
 7 Exd2    GSM2545340 Cerebellum       2366
 8 Gjc2    GSM2545340 Cerebellum        310
 9 Plp1    GSM2545340 Cerebellum      53126
10 Gnb4    GSM2545340 Cerebellum       1355
# ℹ 14,730 more rows
Challenge:

Using pipes, subset the rna data to keep observations in female mice at time 0, where the gene has an expression higher than 50000, and retain only the columns gene, sample, time, expression and age.

rna %>%
  filter(expression > 50000,
         sex == "Female",
         time == 0 ) %>%
  select(gene, sample, time, expression, age)
# A tibble: 9 × 5
  gene   sample      time expression   age
  <chr>  <chr>      <dbl>      <dbl> <dbl>
1 Plp1   GSM2545337     0     101241     8
2 Atp1b1 GSM2545337     0      53260     8
3 Plp1   GSM2545338     0      96534     8
4 Atp1b1 GSM2545338     0      50614     8
5 Plp1   GSM2545348     0     102790     8
6 Atp1b1 GSM2545348     0      59544     8
7 Plp1   GSM2545353     0      71237     8
8 Glul   GSM2545353     0      52451     8
9 Atp1b1 GSM2545353     0      61451     8

Mutate

Frequently you’ll want to create new columns based on the values of existing columns, for example to do unit conversions, or to find the ratio of values in two columns. For this we’ll use mutate().

To create a new column of time in hours:

rna %>%
  mutate(time_hours = time * 24) %>%
  select(time, time_hours)
# A tibble: 32,428 × 2
    time time_hours
   <dbl>      <dbl>
 1     8        192
 2     8        192
 3     8        192
 4     8        192
 5     8        192
 6     8        192
 7     8        192
 8     8        192
 9     8        192
10     8        192
# ℹ 32,418 more rows

You can also create a second new column based on the first new column within the same call of mutate():

rna %>%
  mutate(time_hours = time * 24,
         time_mn = time_hours * 60) %>%
  select(time, time_hours, time_mn)
# A tibble: 32,428 × 3
    time time_hours time_mn
   <dbl>      <dbl>   <dbl>
 1     8        192   11520
 2     8        192   11520
 3     8        192   11520
 4     8        192   11520
 5     8        192   11520
 6     8        192   11520
 7     8        192   11520
 8     8        192   11520
 9     8        192   11520
10     8        192   11520
# ℹ 32,418 more rows
Challenge

Create a new data frame from the rna data that meets the following criteria: contains only the gene, chromosome_name, phenotype_description, sample, and expression columns. The expression values should be log-transformed. This data frame must only contain genes located on sex chromosomes, associated with a phenotype_description, and with a log expression higher than 5.

Hint: think about how the commands should be ordered to produce this data frame!

rna %>%
  mutate(expression = log(expression)) %>%
  select(gene, chromosome_name, phenotype_description, sample, expression) %>%
  filter(chromosome_name == "X" | chromosome_name == "Y") %>%
  filter(!is.na(phenotype_description)) %>%
  filter(expression > 5)
# A tibble: 649 × 5
   gene   chromosome_name phenotype_description                sample expression
   <chr>  <chr>           <chr>                                <chr>       <dbl>
 1 Plp1   X               abnormal CNS glial cell morphology   GSM25…      10.7 
 2 Slc7a3 X               decreased body length                GSM25…       5.46
 3 Plxnb3 X               abnormal coat appearance             GSM25…       6.58
 4 Rbm3   X               abnormal liver morphology            GSM25…       9.32
 5 Cfp    X               abnormal cardiovascular system phys… GSM25…       6.18
 6 Ebp    X               abnormal embryonic erythrocyte morp… GSM25…       6.68
 7 Cd99l2 X               abnormal cellular extravasation      GSM25…       8.04
 8 Piga   X               abnormal brain development           GSM25…       6.06
 9 Pim2   X               decreased T cell proliferation       GSM25…       7.11
10 Itm2a  X               no abnormal phenotype detected       GSM25…       7.48
# ℹ 639 more rows

The materials in this lesson have been adapted from work created by the HBC and Data Carpentry, as well as materials created by Laurent Gatto, Charlotte Soneson, Jenny Drnevich, Robert Castelo, and Kevin Rue-Albert. These are open access materials distributed under the terms of the Creative Commons Attribution license (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.